
Selected Solutions for Chapter 9:
Medians and Order Statistics

Solution to Exercise 9.3-1

For groups of 7, the algorithm still works in linear time. Thenumber of elements
greater thanx (and similarly, the number less thanx) is at least

4

��

1

2

ln

7

m

�

� 2

�

�
2n

7
� 8 ;

and the recurrence becomes

T .n/ � T .dn=7e/ C T .5n=7 C 8/ C O.n/ ;

which can be shown to beO.n/ by substitution, as for the groups of 5 case in the
text.
For groups of 3, however, the algorithm no longer works in linear time. The number
of elements greater thanx, and the number of elements less thanx, is at least

2

��

1

2

ln

3

m

�

� 2

�

�
n

3
� 4 ;

and the recurrence becomes

T .n/ � T .dn=3e/ C T .2n=3 C 4/ C O.n/ ;

which does not have a linear solution.
We can prove that the worst-case time for groups of 3 is�.n lg n/. We do so by
deriving a recurrence for a particular case that takes�.n lg n/ time.
In counting up the number of elements greater thanx (and similarly, the num-

ber less thanx), consider the particular case in which there are exactly
l

1

2

l

n

3

mm

groups with medians� x and in which the “leftover” group does contribute 2
elements greater thanx. Then the number of elements greater thanx is exactly

2
�l

1

2

l

n

3

mm

� 1
�

C 1 (the �1 discountsx’s group, as usual, and theC1 is con-

tributed byx’s group)D 2 dn=6e � 1, and the recursive step for elements� x has
n � .2 dn=6e � 1/ � n � .2.n=6 C 1/ � 1/ D 2n=3 � 1 elements. Observe also
that theO.n/ term in the recurrence is really‚.n/, since the partitioning in step 4
takes‚.n/ (not justO.n/) time. Thus, we get the recurrence

T .n/ � T .dn=3e/ C T .2n=3 � 1/ C ‚.n/ � T .n=3/ C T .2n=3 � 1/ C ‚.n/ ;

from which you can show thatT .n/ � cn lg n by substitution. You can also see
thatT .n/ is nonlinear by noticing that each level of the recursion tree sums ton.
In fact, any odd group size� 5 works in linear time.



9-2 Selected Solutions for Chapter 9: Medians and Order Statistics

Solution to Exercise 9.3-3

A modification to quicksort that allows it to run inO.n lg n/ time in the worst case
uses the deterministic PARTITION algorithm that was modified to take an element
to partition around as an input parameter.

SELECT takes an arrayA, the boundsp andr of the subarray inA, and the ranki
of an order statistic, and in time linear in the size of the subarrayAŒp : : r� it returns
thei th smallest element inAŒp : : r�.

BEST-CASE-QUICKSORT.A; p; r/

if p < r

i D b.r � p C 1/=2c

x D SELECT.A; p; r; i /

q D PARTITION.x/

BEST-CASE-QUICKSORT.A; p; q � 1/

BEST-CASE-QUICKSORT.A; q C 1; r/

For an n-element array, the largest subarray that BEST-CASE-QUICKSORT re-
curses on hasn=2 elements. This situation occurs whenn D r � p C 1 is even;
then the subarrayAŒq C 1 : : r� hasn=2 elements, and the subarrayAŒp : : q � 1�

hasn=2 � 1 elements.

Because BEST-CASE-QUICKSORT always recurses on subarrays that are at most
half the size of the original array, the recurrence for the worst-case running time is
T .n/ � 2T .n=2/ C ‚.n/ D O.n lg n/.

Solution to Exercise 9.3-5

We assume that are given a procedure MEDIAN that takes as parameters an ar-
rayA and subarray indicesp andr , and returns the value of the median element of
AŒp : : r� in O.n/ time in the worst case.

Given MEDIAN, here is a linear-time algorithm SELECT0 for finding thei th small-
est element inAŒp : : r�. This algorithm uses the deterministic PARTITION algo-
rithm that was modified to take an element to partition aroundas an input parame-
ter.



Selected Solutions for Chapter 9: Medians and Order Statistics 9-3

SELECT0.A; p; r; i/

if p == r

return AŒp�

x D MEDIAN.A; p; r/

q D PARTITION.x/

k D q � p C 1

if i == k

return AŒq�

elseif i < k

return SELECT0.A; p; q � 1; i/

else return SELECT0.A; q C 1; r; i � k/

Becausex is the median ofAŒp : : r�, each of the subarraysAŒp : : q � 1� and
AŒq C 1 : : r� has at most half the number of elements ofAŒp : : r�. The recurrence
for the worst-case running time of SELECT0 is T .n/ � T .n=2/ C O.n/ D O.n/.

Solution to Problem 9-1

We assume that the numbers start out in an array.

a. Sort the numbers using merge sort or heapsort, which take‚.n lg n/ worst-case
time. (Don’t use quicksort or insertion sort, which can take‚.n2/ time.) Put
the i largest elements (directly accessible in the sorted array)into the output
array, taking‚.i/ time.

Total worst-case running time:‚.n lg n C i/ D ‚.n lg n/ (becausei � n).

b. Implement the priority queue as a heap. Build the heap using BUILD -HEAP,
which takes‚.n/ time, then call HEAP-EXTRACT-MAX i times to get thei
largest elements, in‚.i lg n/ worst-case time, and store them in reverse order
of extraction in the output array. The worst-case extraction time is‚.i lg n/

because

� i extractions from a heap withO.n/ elements takesi � O.lg n/ D O.i lg n/

time, and
� half of thei extractions are from a heap with� n=2 elements, so thosei=2

extractions take.i=2/�.lg.n=2// D �.i lg n/ time in the worst case.

Total worst-case running time:‚.n C i lg n/.

c. Use the SELECT algorithm of Section 9.3 to find thei th largest number in‚.n/

time. Partition around that number in‚.n/ time. Sort thei largest numbers in
‚.i lg i/ worst-case time (with merge sort or heapsort).

Total worst-case running time:‚.n C i lg i/.

Note that method (c) is always asymptotically at least as good as the other two
methods, and that method (b) is asymptotically at least as good as (a). (Com-
paring (c) to (b) is easy, but it is less obvious how to compare(c) and (b) to (a).
(c) and (b) are asymptotically at least as good as (a) becausen, i lg i , andi lg n are
all O.n lg n/. The sum of two things that areO.n lg n/ is alsoO.n lg n/.)


