Selected Solutionsfor Chapter 9:
Medians and Order Statistics

Solution to Exercise 9.3-1

For groups of 7, the algorithm still works in linear time. Tinember of elements
greater than: (and similarly, the number less thaiis at least

1rn 2n
4({5 Eﬂ —2) z25 8
and the recurrence becomes
T(n) <T([n/7]) + T(5nr/7+8)+ O(n),
which can be shown to b@(n) by substitution, as for the groups of 5 case in the

text.

For groups of 3, however, the algorithm no longer works iadintime. The number
of elements greater than and the number of elements less thaiis at least

1rn n
2({5 BH —2) =37
and the recurrence becomes
Tn)<T(n/3])+TR2n/34+4)+ O(n),

which does not have a linear solution.

We can prove that the worst-case time for groups of (s Ign). We do so by
deriving a recurrence for a particular case that tdkéslg n) time.

In counting up the number of elements greater thagand similarly, the num-
ber less thanx), consider the particular case in which there are ex*%lpgﬂ
groups with mediang= x and in which the “leftover” group does contribute 2
elements greater than Then the number of elements greater thais exactly

2({%(%” — 1) + 1 (the —1 discountsx’s group, as usual, and thel is con-

tributed byx’s group)= 2 [r/6] — 1, and the recursive step for elemertsc has
n—2[n/6l—-1)>n—2(n/6+1)—1) =2n/3 — 1 elements. Observe also
that theO(n) term in the recurrence is really(n), since the partitioning in step 4
takes®(n) (not justO(n)) time. Thus, we get the recurrence

Tn)=T([n/3))+T2n/3-1)+0Om)=T[n/3)+T2n/3-1)+6(n),
from which you can show thaf(n) > cnlgn by substitution. You can also see
that T (n) is nonlinear by noticing that each level of the recursioe seams ta:.

In fact, any odd group size 5 works in linear time.

9-2 Selected Solutions for Chapter 9: Medians and Order Satistics

Solution to Exercise 9.3-3

A modification to quicksort that allows it to run i@ (n Ig n) time in the worst case
uses the deterministicARTITION algorithm that was modified to take an element
to partition around as an input parameter.

SELECT takes an arrayl, the boundg andr of the subarray iM, and the rank
of an order statistic, and in time linear in the size of thesstdy A[p . . r] it returns
theith smallest elementid[p..r].

BEST-CASE-QUICKSORT(A, p,r)
ifp<r
i=[r—p+1)/2]
x = SELECT(A, p,r,i)
g = PARTITION(x)
BESTCASE-QUICKSORT(A, p,g — 1)
BEST-CASE-QUICKSORT(A,q + 1,r)

For ann-element array, the largest subarray thasB CASE-QUICKSORT re-
curses on has/2 elements. This situation occurs when= r — p + 1 is even;
then the subarrayi[g + 1..r] hasn/2 elements, and the subarrayp ..q — 1]
hasn/2 — 1 elements.

Because BsTCASE-QUICKSORT always recurses on subarrays that are at most
half the size of the original array, the recurrence for thestvcase running time is
T(n) <2T(n/2)+ O(n) = O(nlgn).

Solution to Exercise 9.3-5

We assume that are given a procedurevVhN that takes as parameters an ar-
ray A and subarray indiceg andr, and returns the value of the median element of
Alp..r]in O(n) time in the worst case.

Given MEDIAN, here is a linear-time algorithmeSecT for finding thei th small-
est element iM[p ..r]. This algorithm uses the deterministia®rITION algo-
rithm that was modified to take an element to partition arcamén input parame-
ter.

Sdlected Solutions for Chapter 9: Medians and Order Statistics 9-3

SELECT (A, p,r,i)
if p==r
return A[p]
x = MEDIAN(A4, p,r)
q = PARTITION(x)

k=g—p+1
ifi ==

return Alq]
esafi <k

return SELECT (A4, p,q — 1,i)
elsereturn SELECT (A,q + 1,r,i — k)

Becausex is the median ofd[p..r], each of the subarrayd[p..q — 1] and
Alg + 1..r] has at most half the number of elementsd¢p . .]. The recurrence
for the worst-case running time oESECT is T'(n) < T'(n/2) + O(n) = O(n).

Solution to Problem 9-1

We assume that the numbers start out in an array.

a. Sortthe numbers using merge sort or heapsort, which@ekeg »n) worst-case
time. (Don't use quicksort or insertion sort, which can ta&ke:?) time.) Put
thei largest elements (directly accessible in the sorted airdg)the output
array, taking®(i) time.

Total worst-case running tim&®(nlgn + i) = ©(nlgn) (becausé < n).

b. Implement the priority queue as a heap. Build the heap using®-HEAP,
which takes®(n) time, then call HHAP-EXTRACT-MAX i times to get the
largest elements, i®(i Ign) worst-case time, and store them in reverse order
of extraction in the output array. The worst-case extractime is©(i Ign)
because

* | extractions from a heap wit@(n) elements takes- O(Ign) = O(ilgn)
time, and

* half of thei extractions are from a heap withn /2 elements, so thosg?2
extractions takéi /2)2(Ig(n/2)) = (i Ign) time in the worst case.

Total worst-case running tim@&®(n + i Ign).

c. Use the &LECT algorithm of Section 9.3 to find thieh largest number i® ()
time. Partition around that number @(r) time. Sort the largest numbers in
O(lgi) worst-case time (with merge sort or heapsort).

Total worst-case running tim@&®(n + i Ig Q).

Note that method (c) is always asymptotically at least agigaothe other two
methods, and that method (b) is asymptotically at least asl g3 (a). (Com-
paring (c) to (b) is easy, but it is less obvious how to comge)yeand (b) to (a).
(c) and (b) are asymptotically at least as good as (a) beecaudgi, andi Ign are

all O(nlgn). The sum of two things that ai@(n Ign) is alsoO(n lgn).)

